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Towards a Cradle-to-Grave, Mission-Wide Simulation System  
P. F. Maldague1, S.S. Wissler2 

Jet Propulsion Laboratory, NASA/California Institute of Technology, Pasadena, CA, 91109, United States 

We articulate a vision for a multi-mission simulation framework capable of servicing a 
Space Mission over its entire lifetime, from early formulation to end-of-mission phases. Our 
vision adopts and extends the APGen-based simulation methodology used by NASA’s planned 
Europa Clipper mission to examine key spacecraft trades, assess impacts to operability, and 
quantify how well the scientific objectives of the mission can be achieved. The simulation 
framework we propose will provide Europa Clipper and future missions with unprecedented 
high-fidelity, integrated, system-level capabilities with the potential to dramatically improve 
design, performance, science return and operability. 

I. Nomenclature 
AAF   = APGen Adaptation File 
ACS   = Attitude Control System 
APGen  = Activity Plan Generator 
API  = Application Programming Interface 
APID  = APplication IDentification 
C&DH  = Command and Data Handling 
CORBA         = Common Object Request Broker Architecture 
DSN  = Deep Space Network 
DSL  = Domain-Specific Language 
ESA  = European Space Agency 
FOV  = Field Of View 
GNC  = Guidance, Navigation and Control 
HTTP  = HyperText Transfer Protocol 
IDE           = Integrated Development Environment 
IMCE  = Integrated Model-Centric Engineering 
ISO  = International Standards Organization 
JAXA  = Japan Aerospace Exploration Agency 
JPL           = Jet Propulsion Laboratory 
JSON  = JavaScript Object Notation 
MER  = Mars Exploration Rovers 
MMPAT  = Multi-Mission Power Analysis Tool 
MOS  = Mission Operations System 
MSL  = Mars Science Laboratory 
NAIF          = Navigation and Ancillary Information Facility  
NASA       = National Aeronautics and Space Administration 
OSI  = Open Systems Interconnection 
OTM  = Orbit Transfer Maneuver 
PEL  = Power Equipment List 
RAP  = Reference Activity Plan 
ReST  = Representational State Transfer 
SEQGEN  = Sequence Generator 
SOAP  = Simple Object Access Protocol 
SOC  = State Of Charge 
TCM  = Trajectory Correction Maneuver 
TFP  = Telecommunications Forecast Predictor 
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UDEF  = User-DEFined library 
XmlRpc  = eXtensible Markup Language Remote Procedure Call protocol 

II. Introduction 
The high-fidelity simulations of the planned Europa Mission described elsewhere in these proceedings [1] have 
demonstrated the enormous value of carrying out such simulations early in the life of a project in many areas: 

 Mission Plan strategy optimization 
 Trade studies involving spacecraft configuration, additional instruments, radiator position 
 Allocations of energy and data 
 Hardware design 
 Hardware test plan development 
 Operability 
 Requirements verification 
 Fault sensitivity analysis 
 Reusable components for a potential Europa Lander and other future missions 

In view of these achievements, it is natural to ask two questions about the future of the Europa simulation framework: 
1. How should the framework evolve to support the Europa Mission beyond Phase B? 
2. Can the framework be extended to other space missions? 

The purpose of this paper is to provide answers to both questions.  Although the answers will reflect the experience 
acquired by the authors in the development and use of the APGen-based simulation framework, they will nonetheless 
contain speculative elements regarding future development of the current simulation methodology.  In particular, the 
identification of key future challenges involves human elements as well as technical issues, and some guesses will 
have to take place.  Having identified the likely challenges, we will go on to try and predict the best approach to meet 
those challenges - which will require some more guesswork.  As a result, the answers provided here have a certain 
aura of uncertainty about them.  But one thing is certain: the current infrastructure needs to change if it is to support 
new customers.  The predictions and recommendations found here may not be perfectly accurate, but they have the 
merit of addressing the problem.  It is the authors' hope that, imperfect as they may be, these recommendations will 
provide useful guidance to space mission systems engineers in their quest for the best possible simulation system. 
 

III.  The Current Simulation Infrastructure 

A necessary step towards providing guidelines for how to change a simulation infrastructure is to take a good look at 
the current state of that infrastructure with an eye towards improvement opportunities.  To a large extent, the APGen-
based simulation infrastructure grew from the bottom up.  Over a period of about twenty years, the authors and their 
co-workers took advantage of existing modeling capabilities, extended these capabilities incrementally so as to avoid 
major and costly redesign, and used creativity and ingenuity whenever available capabilities did not quite measure up 
to the mission-specific task at hand.  In this section, we review the results of this bottom-up evolution, which has led 
to the modeling infrastructure currently used by Europa Clipper and other space missions. 

A. Technology is not the Issue 
Interestingly, the technology required to perform high-fidelity mission simulations is not new.  Discrete event 
simulation has been around for over twenty years.  Technologies for gluing together applications and libraries that 
were not intended to work as an integrated system have been available for about as long: software components such 
as dynamic libraries and run-time loaders, communications protocols such as CORBA, SOAP and XmlRpc, and easy-
to-parse file formats such as comma-separated values, XML and JSON have all been available for a number of years. 
Given that the technology required for performing high-fidelity simulations was available, and given the fact that such 
simulations are clearly very beneficial to the project, why did it take so long for simulations such as reported in Ref. 
[1] to become available to space missions?  This turns out to be a complex question with several facets.  We would 
like to offer answers in the form of two real-life lessons, learned the hard way: 
 

Lesson 1: it is easy to learn and apply design principles that combine low cost and high probability 
of success, but it is much more difficult to find guidance in how to integrate systems that were not 
designed to work together 
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Lesson 2: system-wide simulations of a complete space mission require an extremely broad range 
of domain-specific expertise and experience 
 

It is possible to take lesson 1 into account by designing a simulation system from scratch, but then, lesson 2 guarantees 
that the cost will be very high.  Over the years, the authors have witnessed a number of attempts to reduce cost by 
taking advantage of existing capabilities in designing a mission-wide system.  What invariably happens is that lesson 
1 ends up driving costs up no matter what, preventing the project from delivering its promise within the budget 
allocated to it. 

B. APGen: from Planning Tool to Simulation Engine 
The central tool used to build and run simulations of the Europa Clipper Mission in its current stage is APGen, a 

modeling and simulation framework developed by NASA's Advanced Multi-Mission Operating System (AMMOS) 
organization [2], [3].  The focus of the original requirements on APGen was mission operations, and in particular the 
planning function within the Mission Operations System (MOS).  The purpose of APGen, as stated in the 
requirements, was to help mission planners create activity plans that did not oversubscribe critical resources such as 
data storage, electrical power and fuel during mission operations.  Early users of APGen had to perform a fair amount 
of manual work when using APGen, such as dropping new activities into mission plans.  Every now and then, the user 
would ask APGen to “model” the plan, i. e., to exercise the modeling rules encoded in the adaptation and evaluate the 
impact of the current plan on critical resources.  Modeling was a time-consuming process, and APGen did not try to 
keep the resource model in synch with the changing activity plan unless requested to do so by the user. 

Later, the capabilities of APGen evolved in response to evolving requirements from its users.  This evolution is 
described elsewhere and will not be duplicated here [3].  What we will do instead is list the capabilities that APGen 
ended up with.  Although these capabilities grew largely as a result of requests coming from missions in Phases D and 
E, they turned out to be extremely useful in the less well-defined environment of pre-Phase A through Phase C. 

C. The APGen DSL or “Adaptation Language” 
The first capability of APGen that turned out to be of crucial importance later on is its Domain Specific Language 

(DSL).  The DSL is what mission engineers use to specify ground and spacecraft activities, resources, and their 
interaction.  The DSL is tailored to increase code clarity and coding efficiency when compared to conventional 
languages. The fundamental constructs within the DSL are parametrized activity types (much like classes in object-
oriented programs) that can be instantiated within a plan and resources which collectively describe the full state of the 
simulation. DSL code defining activities and resources specific to a particular mission is often referred to as an APGen 
“adaptation”. Activities and their effect on resources are modeled using APGen’s discrete-event simulation engine, 
which only performs calculations when requested to.  Modeling requests originate either from the APGen user 
interface or, more frequently, from execution scripts written by the simulation developer to orchestrate the overall 
simulation process. The discrete event simulation paradigm allows APGen to run simulations significantly faster than 
real-time; for example, Europa Clipper end-to-end simulations run at over 8,000x real-time. 
1. Strong but Flexible Typing of APGen variables 
One feature of the DSL which is widely appreciated by APGen adapters is the flexibility it provides when defining 
simulation variables.  The DSL is strongly typed in the sense that the type of each variable must be specified at the 
time the variable is defined.  The following types are supported: 

1. Boolean 
2. integer 
3. double-precision 
4. string 
5. time 
6. duration 
7. object 
8. array 

Automatic conversion between types is allowed in specific cases (e. g. between integer and double-precision values) 
but most conversions are forbidden.  For example, a duration can be added to another duration or to a time, but not to 
an integer nor to a double-precision number (early versions of APGen allowed this, interpreting the number as a 
number of seconds.)  In that sense, the APGen DSL is a strongly typed programming language. 
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Within an array, the style of the array (list or map) and the types of the array elements do not have to be declared until 
the elements are actually assigned specific values.  An APGen array can have one of two styles: a list of values or a 
map of values in which each element is indexed by a string.  In either case, the values do not have to be all of the same 
type.  The actual type of a value is determined at the time an element is defined.  For example, if a variable A has been 
declared as an array, an assignment in the style 

 A[0] = 3.141593; 

will specialize the type of A as a list, while an assignment in the style 

A["high gain antenna"]=2.0; 

will specialize the type of A as a map.  Once an array has been identified as a list (resp. map), additional element 
definitions must always use the first (resp. second) style.  Furthermore, once an array element has been defined through 
an assignment in either style, the element inherits the type of the value assigned to it, which in effect becomes the 
declared type of the array element.  Further assignments to that same element can only be made if the assigned value 
is of the same type as the element, or if APGen provides an implicit conversion from the type of the value to the type 
of the element. 
2. Time and Duration as Native Types 
We make a special note of the availability of time and duration types.  Standard programming languages provide time 
specifications, such as the time_t type available from the C library, as well as utility functions for manipulating time 
values.  The APGen DSL, in recognition of the all-important role played by time and duration in modeling algorithms, 
provides concise encapsulation of the most frequent operations related to times: 

 durations can be added to or subtracted from both times and durations 
 negative durations are allowed 
 times can be subtracted, resulting in a duration 
 a duration can be divided by a duration, resulting in a double-precision number 
 a duration can be multiplied by a number, resulting in another duration 

Time and duration values are implemented as fixed-precision quantities with a one-millisecond resolution.  The reason 
for this is that time values are used as the primary index in the all-important queue of modeling events, and it would 
be extremely awkward to have to deal with rounding errors in that primary index.  Furthermore, the timing algorithms 
in APGen are designed to be completely deterministic - modeling the same problem twice produces exactly the same 
result - and allowing rounding errors into these algorithms would conflict with the design. 
3. Referencing Objects 
Finally, we note that the object type is essentially the same as a “smart pointer” in languages such as C++.  Currently, 
this type is only used to capture activity instances created by APGen's scheduling and decomposition algorithms.  A 
more general implementation, allowing object variables to point to other objects such as resources and events, is 
currently in preparation.  The purpose of this generalization would be to provide support for modeling disruptive 
events such as faults.  When modeling an unplanned event, adapters need to establish and manipulate the context in 
which the event occurred, such as lists of activities whose execution was still in process at the time of the event.  A 
general object type provides exactly the kind of access an adapter needs in such situations. 
4. APGen DSL vs. Established Programming Languages 
It is clear from the above that the APGen DSL differs in essential ways from generic programming languages such 
as C and python.  As a result, learning to adapt APGen is a skill that presents a significant learning curve.  Once the 
DSL has been mastered, its use allows adapters to express and even reuse their modeling patterns with considerable 
ease.  But there is no question that there is a tradeoff between the learning curve and the corresponding benefits. 
Fortunately, the alternative between the APGen DSL and more widely used programming languages does not have 
to be an either-or situation.  As will be explored in detail later in this article, the APGen framework can be extended 
to provide external models with direct access to the modeling process, resulting in a distributed, heterogeneous 
modeling system in which a variety of model implementations can coexist peacefully.  We will return to this topic in 
a later section of the paper. 

D. Integration of External Models: the APGen User-Defined Library 
Next, we mention another essential component of the APGen infrastructure: the user-defined library (UDEF). This 
library allows adapters to extend the DSL by providing new functions.  The new functions must be implemented in a 
shared library which is loaded at run time by the APGen program.  The shared library features a well-defined API 



5 
 

which tells adapters how to extract function arguments from the internal APGen data repository and how to define 
function results which can be returned to the APGen core engine for further processing. 
The user-defined library has turned out to play an essential role in the ability to integrate APGen with an external 
model in case the external model is available as a C or C++ library.  The user-defined library can be built in such a 
way that the external library is linked to it, either statically (as a static archive) or dynamically (as a shared library 
loaded at run time.)  By including external library header files in the build process, the user-defined library API can 
make calls to external functions, thus exposing the functionality of the external library to the APGen DSL in a seamless 
manner.  Although this integration mechanism is not intuitive and takes some getting used to, especially for non-
programmers, it has proven very flexible and reliable over the years. 

E. Hierarchical Activity Decomposition 
A less-than-obvious but extremely useful feature of APGen is that it provides adapters with the ability to create 

and maintain hierarchies of activities which cooperate in achieving a desired state (a goal, in the terminology we will 
introduce later on) or outcome.  The APGen DSL provides adapters with means to specify how a high-level activity, 
for example a maneuver, decomposes into child activities each one of which is responsible for one aspect of the overall 
purpose of the high-level activity. Decomposition algorithms allow high-level activities, which typically represent 
science or engineering goals, to be expanded recursively into lower-level activities and ultimately into commands that 
implement these goals.  Early APGen activity plans contained a few hundred activities.  Today, detailed multi-year 
simulations like those produced by the planned Europa Clipper mission produce between 100,000 and a million 
activities.  The hierarchy mechanism is essential in providing means to organize such large activity plans into a 
structure that can be examined relatively easily. 

F. APGen Scheduling Algorithms 
APGen's scheduling capabilities turn out to be an essential part - perhaps even the most important part - of 

providing a fully functional simulation of a space mission.  The basic scheduling algorithm used by the APGen 
modeling engine has been described in detail elsewhere [2], and we will therefore limit ourselves to a brief overview.  
The basic component of the APGen scheduling engine is a window finder which takes as input a “scheduling 
condition” and a minimum duration over which the scheduling condition is to be continuously true. The scheduling 
condition can be a generic expression of arbitrary complexity which evaluates to a Boolean value.  The expression 
can involve constants, arithmetic and logical operators, calls to AAF-defined functions and special APGen methods 
(currentval) that return the current value of any state variable.  The restriction to AAF-defined functions is motivated 
by the need to identify all events that can potentially cause the scheduling condition to become true. 

An important restriction on the use of the window-finding algorithm is that it needs to base its evaluation of state 
variables on a previous modeling pass.  Specifically, suppose that the activity plan is currently in a state which we 
denote symbolically by A.  Suppose also that we have asked APGen to model the plan while in that state, so that the 
time-dependent profiles of all state variables reflect state A of the activity plan. Our goal is to find windows within 
which to schedule additional activities.  Before any of these additional activities are created, the plan is still in state A, 
and we can rely on the previously modeled state variables to evaluate windows.  Once we start adding activities within 
those windows, the plan enters new states B, C, ... as we keep adding activities to the plan one by one.  Because 
modeling the entire plan is typically a time-consuming task, the scheduling engine only recomputes state variables up 
to the current value of simulation time (designated by the global variable now in the APGen adaptation.)  State variable 
values beyond now are still provided by the modeling run that was performed earlier, while the plan was in state A.  
This restriction is not intuitive, and it takes time for an adapter to write algorithms that are robust in spite of it.  On 
the positive side, the restriction makes scheduling about as efficient as modeling.  Eliminating the restriction would 
require taking snapshots of the plan state before placing any new activity in the plan and restoring that state in case 
the new activity turned out to violate some constraint not included in the scheduling condition.  Backtracking is of 
course a well-known technique in automatic activity planning; it is just not practical to use it given the computational 
complexity of typical APGen models. 

In early applications, scheduling could only be performed on the fly, i. e., concurrently with the modeling process.  
In a recent development motivated by the needs of the Europa Clipper adapters, an asynchronous get_windows 
function was introduced to provide the window-finding capability outside of the modeling loop.  The semantics of 
get_windows is simpler than the previous scheduling semantics, since the computation of windows has been decoupled 
from the modeling process.  As a result, this new function has made scheduling easier to learn and easier to implement 
by APGen adapters. 
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IV. The Current Adaptation Process 
In this section, we will outline the process that is used by mission personnel to customize, or “adapt,” APGen to a 
specific mission such as Europa Clipper.  The adaptation process described below is specific to the APGen tool.  While 
this particular process has served Europa Clipper very well until now, we will argue later in our paper that future 
development will require taking steps away from the APGen-specific adaptation process and towards a more generic, 
system-wide process to support later Mission Phases. 
In making recommendations for a generic, system-wide process to replace the APGen-centric system used up to now, 
it is very important to ensure that the essence of the current system has been captured correctly.  We believe that the 
success of the APGen-based adaptation effort is due in large part to qualities and other “-ilities” that have not received 
the attention they deserve; in particular, we are thinking of things listed in Table 1 below. 

Table 1 - Desirable “-ilities” of an Ideal Modeling System 

-ility Resulting requirement(s) 

tweakability The system can be easily modified to correct errors or omissions 

evolvability The system can be adapted or extended to add additional detail or new models with little effort 

integrability The components of the system are heterogeneous, yet they are able to cooperate in harmony 
thanks to interfaces that are easy to implement, configure and deploy 

verifiability The behavior of the system can be analyzed and validated without difficulty 

 
A key concern as we navigate through the various subsystems that make up the APGen adaptation will be to capture 
the above “-ilities” as faithfully as we can, which will enable us to list them as requirements for the Ideal Simulation 
System later in our paper. 

A. Adaptation Files 
Besides the modeling engine itself, an APGen-based simulation must include one or, more typically, a number of files 
describing the components of the system and the precise manner in which these components interact.  The process of 
assembling, coordinating and maintaining these files is known as “adaptation.”  The adaptation of a complex mission 
such as Europa Clipper involves one to two hundred APGen adaptation files (AAFs) and the adaptation task is 
therefore a significant part of setting up a complete simulation system. 
To make it easier to manage the adaptation, it is customary to divide it into chunks known as “subsystems.”    A typical 
subsystem involves a dozen or so adaptation files, each one devoted to one aspect of the subsystem such as 

 constants 
 global variables 
 lists of subsystem components 
 lists of state variables (APGen resources) 
 high-level models of subsystem behavior (APGen abstract resources) 
 subsystem-specific activity types 
 activity decomposition algorithms 
 activity behavior specification 

Table 2 below, which is adapted from Ref. [1], shows a list of the subsystems used on the Europa Clipper adaptation. 

Table 2 - Europa Clipper Subsystems (adapted from Ref. [1]) 

Subsystem Description 
Geometry NASA’s Navigation and Ancillary Information Facility (NAIF) SPICE based geometry 

model 
Ground Station  Model of Earth-based ground stations composed primarily of the Deep Space Network 

(DSN) plus assets from the European Space Agency (ESA), the Japan Aerospace 
Exploration Agency (JAXA) and NASA’s Near Earth Network 
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Subsystem Description 
Telecommunications Supports downlink modeling such as achievable data rates for X and Ka-band transmitters 

for all low-gain, fan-beam, medium-gain and high-gain antennas 
Data Model of instrument and engineering data production, on-board data storage,  and playback 

of data to the DSN 
Power Models power loads from all spacecraft subsystems and instruments, solar array output and 

battery state of charge 
GNC Models commanded attitudes for communication, science observations, and trajectory 

maneuvers 
Solar Array  Models solar array articulation for sun tracking and fixed modes as well as hard-stop 

avoidance “flops” 
Radiation Models the radiation environment’s effects on the solar arrays 
Propulsion Medium fidelity fuel usage model 
Payload Instrument models based on specifications provided by the Europa science team 
Mission Operations Models mission operations process, timelines and shift schedules 

 

B. Subsystem Organization 
A typical subsystem contains a number of entities: global constants and variables, state variables or resources, activity 
types, constraints, and a variety of algorithms which describe things like how activities decompose into lower-level 
activities and how activities affect state variables and resources.  The APGen DSL offers descriptive names for all 
these entities, as part of a language syntax which still contains many elements of its original design in 1996.  In recent 
years, however, the Integrated Model-Centric Engineering (IMCE) initiative at JPL has embarked on a systematic 
attempt to capture the common elements of the many models used in the design, development and operation of space 
missions and to provide a uniform terminology for describing them [4].  Although IMCE is still a work in progress, it 
has the potential of making integration of heterogeneous models much easier than it is today, and we wholeheartedly 
support its efforts in that direction.  As a modest contribution to IMCE's efforts, we have made an attempt to bridge 
the gap between the APGen DSL and what IMCE calls the ontology of a mission system.  Table 3 below is a by-
product of our effort; it lists the key elements of a generic subsystem in terms borrowed from the IMCE ontology, 
together with the terminology currently in use in the APGen DSL.  Note that the correspondence established in the 
table is tentative and by no means rigorous; it captures the current state of an IMCE/APGen bridge which is still under 
construction.  For instance, IMCE does not currently have a formal definition for what constitutes a subsystem, 
although the word subsystem is used informally in the examples mentioned in Ref. [4].  The IMCE ontology uses an 
abstract term, behaving element, to capture the essence of a system component; in fact, a component can be looked at 
as a concrete implementation of the abstract notion of behaving element.  On the APGen side, the word subsystem is 
used rather informally; it sometimes describes a component of the system (DSN Station, Solar Panel, Payload), but at 
other times it represents a point of view rather than the result of decomposing the system into a hierarchy (Geometry, 
Power).  For the time being, we will not worry about these important details and we will adopt the usage commonly 
found in simulation work.  In particular, we will refer to subsystems as if they were components of the system, realizing 
that reality is often more complex. 

Table 3 - Elements of a Generic Subsystem 

Element Description APGen DSL terminology 
Parameter constant “constant” whose value may evolve slowly over the life of 

the mission 
global variable 

global 
variable1 

allowed to change in time global variable 

State 
Variable 

numeric  varies continuously (e. g. a physical quantity) numeric resource 
discrete transitions from one discrete value to the next (e. g. an 

instrument mode); usually accompanied by a table of 
allowed transitions 

state resource (lists possible states), 
abstract resource (implements 
transitions) 

Behavior pattern of activities or events designed to meet an objective activity type (high level) 

                                                           
1 Not part of the IMCE Ontology 
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Element Description APGen DSL terminology 
goal 
achiever 

command (low level)1 

timeline 
generator2 

built-in behavior, implemented as a modeling algorithm 
which describes the unfolding in time of a sequence of 
resource usage events and/or sub-activities; can be imported 
from an external model via the user-defined library 
mechanism 

modeling section within an activity 
type or abstract resource definition3 

Constraint goal a constraint imposed on a state over a time interval, usually 
to achieve a high-level goal 

activity type4 

state 
constraint 

a passive constraint, which is evaluated during modeling but 
not enforced 

constraint 

goal 
elaboration5 

a scheduling constraint, used to determine the placement of 
desired activities in the mission plan 

scheduling section of an activity 
type definition 

 
In the following sub-sections, we show how the generic description in table 3 applies to concrete subsystems such as 
those found in the Europa Clipper mission. 
1. Deep Space Network (DSN) 
The DSN model is mostly mission-independent, since the same ground stations and antennas are used for all deep 
space missions.  The model needs to be extended for missions such as Europa Clipper which rely on assets from space 
agencies other than NASA, but in that case also, the additional assets do not vary from one mission to the next other 
than upgrades to the ground system.  Table 4 below lists the specifics of the DSN model. 

Table 4 - DSN Subsystem 

Element Description Implementation Details 
Parameters constant, mission-independent examples: lists of DSN stations, antenna 

size and other operational characteristics 
for each station, SPICE kernels for 
ground station geometry [5] 

State Variables discrete states for station visibility, operational mode etc.; 
aggregate states expressing global information such as 
availability of any DSN station for uplink or downlink 

 

continuous states for station elevation, telecom link capacity, one-
way light time 

station elevation and link capacity affect 
available data rates; one-way light time 
is of the order of an hour for a spacecraft 
in orbit around Jupiter 

station allocations the spacecraft can only use stations that 
are not only visible but have also been 
allocated to the mission by the DSN 

Behavior built-in behavior of signal acquisition and other station variables 
is specified by a detailed multi-mission model that takes all 
operational constraints into account 

state computations are mission-
independent (except the simulation of 
station allocations, if required); 
computations require assistance from 
Geometry and Telecom subsystems 

Constraints DSN-related goals standard activity types are available for 
implementing all DSN-related requests 
(uplink and downlink events) 

scheduling constraints may be needed to simulate the allocation 
of DSN stations to the mission in pre-Phase A, before DSN 
schedules have become available 

 

                                                           
1 APGen models commands as activity types, but can create special output products (e. g. sequence files) specifically 
for activities that represent commands 
2 The IMCE Ontology includes timelines but not the means to generate them (other than the equations of physics) 
3 If the model is implemented externally, the modeling section relies on the API specified in the user-defined library 
to express the required behavior 
4 An activity type that implements a goal should contain decomposition or modeling information that enforces the 
constraint imposed by the goal 
5 Elaboration is in the process of being added to the IMCE Ontology 
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2. Guidance, Navigation and Control (GNC) 
Table 5 below highlights the components of the GNC subsystem.  Although GNC implementation varies from one 
mission to the next, computational components of the model such as quaternion algebra and matrix manipulation are 
mission-independent, providing significant heritage and reuse opportunities.  High-level behaviors as encoded e. g. 
by maneuver activity types can be at least partially table-driven, e. g. in the specification of generic turn profiles when 
changing pointing attitudes. 

Table 5 - Guidance, Navigation and Control (GNC) Subsystem 

Element Description Implementation Details 
Parameters constants that parameterize the spacecraft hardware: star 

trackers, inertial measuring units, sun sensors, reaction wheels, 
thrusters 

data structure types are essentially 
mission-independent but values may 
vary from one mission to the next 

constants that capture the pairing of mechanical and electronic 
devices 

note: most devices combine a 
mechanical component (e. g. a reaction 
wheel) with one or more control 
electronics circuit board(s) 

constants that capture spacecraft and payload geometry SPICE Frames are used to specify 
mounting geometry of imaging and 
radar instruments 

State Variables numeric states representing position and velocity data obtained 
or computed from planetary and target body ephemerides  

GNC computations need heavy 
assistance from Geometry and Power 
subsystems numeric states describing spacecraft attitude, encoded as 

quaternions 
discrete states describing high-level pointing modes (e. g. Earth- 
or Nadir-pointed) 

Behavior Trajectory Correction Maneuvers (TCM) - goal is to achieve a 
given delta V 

activity parameters are provided by the 
Navigation Team 

turn activities - goal is to achieve a given attitude specified 
symbolically or via a pointing vector or attitude quaternion 

requires turn profile computation and 
multi-level activity decomposition 

low-level ACS commands - goal is to put ACS in a given state details vary from mission to mission 
Constraints passive constraints related to hard stop avoidance for gimbaled 

devices (antennas, solar panels) 
turn activity algorithms are designed to 
avoid running into hard stops; passive 
constraints provide algorithm validation 

passive constraints related to Sun and bright-body avoidance require Field of View (FOV) data as well 
as mounting geometry for imaging 
instruments 

3. Data Subsystem 
The Data subsystem is largely mission-independent thanks to its (mostly) table-driven design.  Tables need to be 
provided for 

 List of APID's (APplication IDentification), used to tag chunks of data so as to specify their provenance 
and priority level 

 Spectral bands used by transmitters and receivers (e. g. Ka-band, X-band) 
 Data rates for production of engineering data by the spacecraft and each instrument 
 Priority tables for determining the order in which data is downlinked 

Activities that achieve data-related goals such as downlink, uplink, delete and re-transmit are largely mission-
independent, with minor modifications that are hand-coded by adapters.  Table 6 below summarizes the elements of 
the Data subsystem. 

Table 6 - Data Subsystem 

Element Description Implementation Details 
Parameters tables for APID's, data rates, priority levels table structure is mission-independent; 

table entries vary from mission to 
mission 

State Variables continuous states include data rate and data volume states 
which are defined for each data-producing or data-consuming 
device onboard the spacecraft 

behavior of rate/volume pairs of states is 
mission independent; parameter tables 
provide most of the mission specifics 

discrete states based on APID tables  
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Element Description Implementation Details 
discrete states based on spectral band (Ka-band, X-band)  

Behavior standard goals: downlink, uplink, retransmit, delete  
data transfer goals - move data from one storage device to 
another, from a storage device to a transmitter, or from a 
receiver to a storage device 

 

budget-setting goals are used e. g. in tactical operations when 
activity plans need to be refined into specific science 
observations 

 

Constraint scheduling constraints are used to create downlink activities 
based on availability of both high-priority data and DSN 
receiving stations 

 

passive constraints monitor the filling level of onboard storage 
devices 

 

 
4. Power Subsystem 
 
In a number of recent APGen adaptations, the power subsystem is implemented externally, using the high-fidelity 
MMPAT power simulation library developed by Eric Wood and his collaborators at JPL [6].  The user-defined library 
mechanism is used to link the library to the APGen simulation engine.  The MMPAT API makes it possible for APGen 
to ingest tables that describe the Power Equipment List (PEL) as well as detailed load information for each possible 
state of the devices listed in the PEL. 
When an MMPAT-based model is not available, the power subsystem is implemented at a lower level of fidelity, 
using generic algorithms for estimating the most important state variables of the power model: 

 device-specific power consumption based on device-indexed load tables 
 battery State of Charge (SOC) based on a simple battery model 
 solar power or RTG power output based on a simple solar cell model coupled with attitude and occultation 

data from the Geometry subsystem 
 
Table 7 below summarizes the contents of the power subsystem. 

Table 7 - Power Subsystem 

Element Description Implementation Details 
Parameters Power Equipment List (PEL) imported from the MMPAT model 

(when used); imported from the System 
Model (Europa Clipper) 

State Variables PEL states  
PEL transitions  
numeric states to capture simulation output (e. g. battery SOC, 
total load, device-specific dissipation, accumulated energy)  

 

Behavior goals are not normally part of the power subsystem; instead, 
timeline-generating elements are inserted into the behavioral 
model of every power-consuming or power-generating device 
onboard the spacecraft 

timeline-generating elements are 
implemented as calls to abstract 
resources in APGen; when the MMPAT 
library is available, these calls delegate 
the modeling to MMPAT via its API 

Constraints passive constraints monitor the battery SOC, which is usually 
not allowed to fall between a given percentage level 

 

additional constraints can be added as needed, e. g. to verify that 
science observations are staying within their energy allocation 

 

5. Geometry Subsystem 
The Geometry subsystem of most APGen adaptations combines four basic elements: 

1. the SPICE toolkit from NASA's NAIF [5] and associated data (called “kernels”) 
2. interfacing routines which expose a small fraction of the SPICE API to the APGen DSL 
3. utility functions coded in the APGen DSL for performing elementary tasks such as matrix multiplication or 

vector normalization 
4. a number of geometry-based state variables which, although mission-specific, share a common structure 

The ability to share a common structure is largely due to the design of the SPICE toolkit, which provides uniform and 
easy access to geometric information relative to planetary and other target bodies as well as spacecraft for all NASA 
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missions.  Of all subsystems, the Geometry subsystem is the one that has the highest level of interaction and integration 
with other subsystems.  As we noted at the beginning of section IV, subsystems often represent specialized view of 
the entire system, as opposed to a piece of a higher-level aggregate.  That is certainly the case for the Geometry 
subsystem.  In spite of its unique characteristics, we have done our best to capture the elements of the Geometry 
subsystem in the same style as other systems in Table 8 below. 

Table 8 - Geometry Subsystem 

Element Description Implementation Details 
Parameters constants that encode mission-specific SPICE parameters, such as 

spacecraft ID, planetary body ID, target body ID 
 

tables of Trajectory Correction Maneuvers (TCMs) and Orbit 
Transfer Maneuvers (OTMs) 

maneuver timing and delta V 
information is provided by the 
navigation team 

State 
Variables 

a variety of numeric states are extracted from planetary ephemerides 
and SPICE trajectory data (SPK files) 

 

GNC quaternion states for attitude-related computations could just 
as well have been implemented here 

quaternion states are shared with the 
GNC subsystem 

discrete states used to represent geometric conditions of interest to 
other subsystems (eclipses, occultations, DSN station visibility etc.) 

 

Behavior the geometric subsystem does not normally include goals, except for 
in situ missions such as MER and MSL [7] 

“geometric goals” such as driving to a 
target or deploying a robot arm require 
assistance from 3D-capable applications 

Constraints scheduling constraints are often used for the automatic placement of 
remote-sensing observations, e. g. whenever the spacecraft is within 
a specified distance of the target body 

 

passive constraints are used to ensure the safety of many instruments 
(e. g., Sun and bright-body avoidance) and for various engineering 
purposes (e. g., make sure that enough bright stars are within the 
FOV of a star tracker) 

 

 
A final note on the Geometry subsystem: more than any other, this subsystem benefits from visualization tools that 
make the system's geometry and its relationship to its planetary environment intuitively obvious.  The geometric 
aspects of APGen simulations have benefited enormously from the integration of APGen with NAIF-maintained tools 
such as Cosmographia [8], [9].  In fact, a number of problems with spacecraft design and launch geometry were first 
identified by looking at Cosmographia movies based on APGen simulation output. 
6. Telecom Subsystem 
The Telecommunications subsystem, although more specialized than the Geometry subsystem, is similar to it in the 
sense that it represents a point of view rather than a piece of the system.  Telecommunications usually take place 
between a spacecraft and an Earth station, although Mars rovers also communicate with Mars orbiters via relay 
operations.  Any state variable or behavioral specification dealing with telecommunications will therefore make 
reference, explicitly or implicitly, to the DSN, geometry and data subsystems.  Table 9 below describes the specifics 
of the Telecom subsystem. 

Table 9 - Telecom Subsystem 

Element Description Implementation Details 
Parameters constants that describe antenna number, antenna gain data tables, 

transmitter power, available data rates and other operational 
characteristics of the onboard system 

a multi-mission, matlab-based version of 
JPL's Telecom Forecast Predictor (TFP) 
model is becoming available as a library 
suitable for linking to APGen; until now, 
ad hoc models have been linked via the 
user-defined library or coded in the 
APGen DSL 

DSN antenna characteristics are mission-independent and available 
as external models 

 

State 
Variables 

numeric states such as signal-to-noise ratio  
discrete states such as maximum sustainable data rate the computation of windows for telecom 

opportunities involve power and 
geometric subsystems as well as the 
telecom subsystem itself 
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Element Description Implementation Details 
Behavior the Telecom subsystem does not normally provide goals  

state computations are based on the physics of the radio wave 
transmission process 

 

Constraints scheduling constraints for telecom activities (uplink, downlink) 
usually reside in other subsystems but rely on rate estimates 
provided by the telecom subsystem 

 

7. Propulsion Subsystem 
The propulsion subsystem plays an essential role in modeling maneuvers (TCMs, OTMs) and thruster-based turn or 
slew activities.  It is usually mission specific, although early, notional versions of the propulsion subsystem can be put 
in place for simulations of a project in Phase A or pre-Phase A.  Table 10 below lists the specifics of the subsystem. 

Table 10 - Propulsion Subsystem 

Element Description Implementation Details 
Parameters thruster number and operational characteristics when possible, propulsion models are 

imported as libraries provided by the 
spacecraft team; such libraries can be 
reused for providing missing detail when 
spacecraft design has not been finalized 

fuel composition, tank capacity 
fuel consumption tables 

State 
Variables 

numeric states are used to track fuel consumption and thruster 
firing count 

 

in typical adaptations, delta V information has been processed by 
the navigation team at the time the spacecraft trajectory was 
designed; it does not need to be looked at in mission simulations 

 

Behavior maneuvers, whose goal is to achieve a specified delta V require a number of sub-activities 
created via decomposition algorithms 
designed to avoid triggering constraint 
violations 

turns, whose goal is to achieve a specified attitude similar in structure to maneuvers 
commands, for achieving low-level goals such as thruster prep, 
turning on heaters etc. 

notional until actual commands become 
available from the spacecraft design 
team 

Constraints passive constraints can keep track of the number of times each 
thruster has been fired 

 

8. Payload Subsystem 
The bulk of the Payload subsystem consists of instrument-specific activities such as science observations, calibrations 
and other maintenance activities.  There is considerable overlap between instrument parameters and state variables 
and those stored in the geometry, GNC, power and data subsystems, since most instruments affect many of the state 
variables on all of these subsystems as well as their own.  There can be considerable variation in the details of an 
instrument-specific adaptation; table 11 below is a generic sketch of what these adaptations may contain. 

Table 11 - Payload Subsystem 

Element Description 
Parameters typically, instrument parameters include constant lists and maps which 

 provide operational mode designations 
 relate power consumption and data rate to operational mode 
 are used in expressing pointing and other constraints 
 define mounting and field of view geometry 
 capture the capacity of internal storage devices 
 state durations of key instrument observation and maintenance activities 

State Variables a number of discrete states are typically used to describe the operational mode of each 
instrument 
specific geometry-related state variables may be defined within the payload subsystem, which 
is more efficient that recomputing these states within the geometry subsystem 

Behavior science observations, which result from science data acquisition goals, are usually implemented 
as activities that are added to the plan via instrument-specific scheduling criteria 
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Element Description 
a number of instrument-specific, low-level functions are typically provided to facilitate the 
description of built-in instrument behavior 

Constraints scheduling constraints are generally expressed as Boolean combinations of geometric factors 
and discrete state variables such as high-level pointing mode 
a number of passive constraints typically express pointing constraints such as Sun and bright-
body avoidance 

C. Ideal System Qualities Revisited 
1. The Subsystem - System Quality Correspondence 
Having outlined the nature of simulation subsystems in some detail, we now revisit our brief discussion of the desirable 
qualities of the ideal simulation system, and in particular the contents of table 1 at the beginning of this section.  Table 
12 below lists, for each subsystem, the estimated relevance of the various “-ilities” assigned to a simulation system.   

Table 12 - Relevance of System “-ilities” by Subsystem 

Subsystem Need for Tweakability Need for Evolvability Need for Integrability 
DSN low; the DSN model has been 

validated by many missions 
low; the DSN changes slowly 
with time 

moderate; it could be useful to 
export the DSN subsystem to 
external simulations 

GNC low; the GNC model tends to 
be generic and few fixes are 
required 

high; a non-standard spacecraft 
ACS may require mimicking or 
even importing portions of flight 
software code1, which may not 
be available until Phase C 

high; in view of its complexity, 
it is important for the GNC 
subsystem - whether imported 
from flight software or not - to 
work in harmony with other 
subsystems 

Data high; instrument data-related 
behavior may not be fully 
specified until Phase C  

high; instrument data-related 
behavior may not be fully 
specified until Phase C 

high; the system model will 
improve in fidelity if it 
integrates instrument models 
developed by the instrument 
teams themselves, when 
available 

Power high; actual spacecraft and 
payload behavior always 
changes after launch, when 
the spacecraft enters its true 
environment 

moderate; most changes in the 
power subsystem occur in pre-
Phase A and Phase A, when 
major tradeoffs are investigated 

high; virtually everything 
onboard the spacecraft needs or 
provides power 

Geometry moderate; pre-Phase A and 
Phase A tradeoff studies often 
involve re-positioning 
instruments or other 
spacecraft components 

low; most geometry calculations 
are generic and do not change 
with time 

high; the orientation and 
mounting point of everything 
attached to the spacecraft needs 
to be known at some point 

Telecom low; the operational 
characteristics and link 
analysis computations of the 
telecom system do not change 
much over time 

low; telecom subsystem design 
does not normally change over 
time 

moderate; telecom analysis is 
relevant to the mission strategy 
regarding downlink scheduling 
and science data budget 
allocations 

Propulsion low; details of the propulsion 
system have usually been 
taken into account by the 
navigation team and do not 
have a major impact on the 
rest of the simulation 

low low 

                                                           
1 As an example, a SEQGEN based verification model for the Dawn mission was successfully modified to include 
parts of the ACS flight code, resulting in much increased fidelity in predicting turn durations. 
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Subsystem Need for Tweakability Need for Evolvability Need for Integrability 
Payload high; adjusting the model to 

improved understanding of 
instrument behavior is a 
priority for Phases A through 
D 

high; adjusting the model to 
improved understanding of 
instrument behavior is a priority 
for Phases A through D 

high; the system model will 
improve in fidelity if it 
integrates instrument models 
developed by the instrument 
teams themselves, when 
available 

 
Note the following two observations about the table: 

1. We have omitted “verifiability” from the table, because model validation is always essential in a system 
model.  More precisely, the extent to which the system model can be validated becomes more and more 
important as the project evolves through successive Mission Phases.  More on this topic below. 

2. We interpret “tweakability” as the ability to change the model as a result of an unforeseen event, for 
example discovery of a bug or the emergence of a new requirement; “evolvability” is seen as the ability to 
go along with planned changes in mission subsystems as they evolve over the life of the mission.  

2. Validation Issues 
The requirements on the fidelity and accuracy of a system model evolve as the mission evolves through its successive 
Phases: 

 Throughout the life of the system model, adapters are performing checks on their contributions to the 
overall modeling code.  For example, the initial implementation of the Geometry subsystem and subsequent 
changes to it are checked using the NAIF Web Geo Calc facility [9]. 

 In pre-Phase A and in Phase A, one of the main functions of the system model is to enable the study of 
tradeoffs between design options.  The main requirement on fidelity is that the relative performance of the 
various options being considered should be modeled as accurately as possible.  Validation efforts should 
focus on the model's accuracy in estimating relative performance of the components under study.  

 In Phase C, detailed specifications for spacecraft and instrument commands are becoming available to the 
modeling team.  It may make sense at that point to integrate an external model of the onboard Command 
and Data Handling (C&DH) subsystem into the system framework, if such a model is available. 

 In Phase D, actual behavior of the assembled spacecraft and payload assembly is being measured for the 
first time.  This is when subsystem tweakability comes into play in a major way, especially for the payload 
subsystem whose instrument models may never have been validated before.  This is also a time at which it 
becomes important for the system model to provide predicted telemetry data, so as to make comparison 
with actual behavior as convenient as possible. 

 Post-launch behavior always results in further changes to the system's behavior, once the spacecraft has 
entered its true environment. 

 Phase E usually extends over a long period of time, and it is fairly common for spacecraft components to 
exhibit off-nominal behavior as they wear out or encounter unforeseen circumstances.  Subsystem models 
have to be modified accordingly, and obtaining agreement between predicted vs. actual telemetry becomes 
a critical goal of the validation effort. 

V. Why Integration Efforts Fail 
 
In the previous section, we have attempted to paint an admittedly sketchy but nonetheless realistic picture of the many 
elements and, more importantly, the many kinds of elements that enter the design and implementation of the 
subsystems that make up a complete mission simulation framework.  In order to streamline the information we 
presented, we have taken hints from the JPL IMCE initiative in an attempt to use uniform terminology across all 
subsystems.  Now, we want to take an even bigger step towards uniformity and generality and seek overall estimates 
of the global effort required to put together a simulation infrastructure similar to, but hopefully better designed than, 
the APGen models that have provided us with basic modeling data.  We will argue that the chances of success of any 
such effort, assuming zero probability for miracles and extraterrestrial interference, are of the order of 5% in the best 
of cases. 
To start, consider the ISO-OSI model known as the “Open System Interconnection” layers; we have reproduced it in 
Table 13 below. 
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Table 13 - ISO-OSI Open System Interconnection Layers 

 
 
 
 
 
 
 
 
 
This model captures in detail all the things that have to be present for a software package (the Application) to connect 
in a fully functional manner to a network.  Although this model is not quite appropriate for our purposes - for example, 
linking subsystems in our case does not necessarily require network access - we can use it as inspiration to put together 
an “integration layer diagram” which captures the various elements that contribute to subsystem integration.  Needless 
to say, we will also seek inspiration from the actual subsystem descriptions laid out in the previous section.  Our first 
attempt is illustrated in Table 14 below (we adopt the “reverse numbering system” of ISO-OSI for consistency). 

Table 14 - Steps Involved in Integrating an External Subsystem into the APGen Infrastructure 

Realm Step Name or Description 
Modeling Engine 7. synchronization with other subsystems 

6. setting / querying remote state variables 
5. opening and closing a modeling run 

User-defined Library 4. API for configuration management find configuration file(s) 
load configuration(s) 
unload configuration(s) 

3. API for opening and closing a simulation session 
2. wrap the external API into an API suitable for the user-defined library 

External Model 1. design and implement the external model as a library or server 
 
The above table assumes that the external subsystem has already been configured to be called from a separate entity 
such as the APGen modeling engine.  But what if that is not the case?  In our experience, mission engineers and multi-
mission tool developers often design simulation tools as standalone applications meant for their personal use or for 
the use of their colleagues on an individual basis, and it can take a fair amount of work to split such applications into 
a main program and a library with an API generic enough to be exported outside of the application's realm.  We cannot 
possibly anticipate all the challenges that would have to be met in such situations, but we can certainly explore what 
it would take to export the APGen simulation engine to another realm.  In fact, such an export capability could be very 
useful in a first step towards distributed processing of independent or nearly independent subsystem models, a topic 
that deserves attention on its own.  But here, let us just concentrate on the steps required for exporting APGen 
simulation data and processes.  Table 15 below summarizes the necessary steps as we see them; this time we number 
steps from top to bottom for reasons that will become clear shortly. 

Table 15 - Steps Involved in Exporting an APGen Model 

Realm Step Name or Description 
APGen Modeling Engine 1-3. design and implement an API 

for exporting internal APGen data 
1. export parameters 
2. export state variables 
3. export behaviors that implement high-
level goals 

APGen Scripting Language 
and Execution Engine 

4. design and implement an API for letting an external entity take control of the 
APGen engine (e. g., modeling commands) 
5. design and implement an API for reading plan and adaptation files into APGen 

Modeling Server 6. use the API to attach the APGen engine to a server that implements a chosen 
Internet access protocol (e. g. HTTP/ReST, SOAP, XmlRPC, ...) 
7. link the APGen export API to methods or requests that can be submitted to the 
server by a remote client 

Realm Layer Name 
Application 7. Application 

6. Presentation 
5. Session 

Data Flow 4. Transport 
3. Network 
2. Data Link 
1. Physical 
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We are now ready to compute our estimated probability of success.  The complete integration process, starting with 
two separate modeling entities that were not designed to work together, and ending with an integrated modeling system 
that can be operated as a single entity, involves 14 separate steps: 7 on the server side (the model being exported) and 
7 on the client side (the system being extended).  In fact, if we change the numeric labels in Table 14 so they read 8 
to 14 instead of 1 to 7, our two tables provide a complete sequence of steps for integrating two distinct modeling 
systems.  Assuming a highly talented and motivated team, we assign a 90% probability of success to each individual 
step.  Assuming that all 14 steps are independent of each other, we conclude that 

Probability of success of the overall integration task = (0.90)14=0.0523 

or about 5%, as claimed. 
It goes without saying that our assumptions are simplistic and the reader will have no trouble punching holes through 
most of them.  If we absolutely had to come up with a more realistic estimate, how would we go about it?  Let us 
address the two main aspects of the probability calculation: 

1. We assumed that the integration steps are independent of each other, which leads to the high exponent (14) 
in the probability formula.  Are there factors that would make the steps more coherent, thereby reducing the 
magnitude of the exponent? 

2. We assumed a uniform 0.90 probability of success for individual steps.  Can we do any better than using a 
wild guess? 

Although we cannot come up with quantitative answers, it is easy to identify project characteristics that could affect 
each one of these two issues.  Table 16 below lists two project characteristics that are “centrifugal,” i. e., tend to lead 
the project away from a high level of integration, and two project characteristics that are “centripetal,” i. e., tend to 
drive the project towards tighter integration. 

Table 16 - Centrifugal vs. Centripetal Project Characteristics 

Centrifugal 
characteristics 

1. organizations do not spontaneously cooperate with other organizations 
and tend to protect their independence - think of how hard it is to build a 
consensus among groups of engineers from different departments 

2. talented individuals often have a preference for their own solutions over 
approaches that require cooperation with an outside group 

 

Centripetal 
characteristics 

1. project management can state and enforce a modeling methodology that 
emphasizes system-level integration from the beginning, thus turning 
model integration into a “corporate goal” and empowering integration 
efforts 

2. project personnel exposed to the benefits of system-wide integration 
from the very beginning see the concrete advantages of integration, 
which encourages participation in integration with no need for prodding 
from anyone   

 
In an organization that has no way to offset centrifugal factors, we believe that our estimate of 90% probability of 
success for an individual integration step is highly optimistic.  As a result, an effort to build an integrated, mission-
wide modeling system will greatly improve its chances of success if it includes one of the two centripetal 
characteristics listed above, and preferably both.  In particular, we note that the availability of detailed simulations 
from the very beginning in pre-Phase A of the Europa Clipper project was instrumental in enlisting the cooperation of 
all subsystems to the overall effort.  Particularly noticeable was the case of the GNC team, who shared their flight 
system algorithms with APGen adapters and, in exchange, acquired detailed and realistic attitude-related scenarios 
which normally take a long time to put together.  Equally noticeable was the enthusiastic participation of the instrument 
teams, who eagerly contributed more and more details about the scheduling process for science observations when 
they realized that the scenarios coming out of the simulation could help them assess whether and how well the project's 
scientific objectives could be met. 
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VI. Towards a Success-Oriented Simulation Architecture 

We now build on the system and subsystem considerations of the previous sections to try and answer the two questions 
listed in the Introduction. 

A. Extending the Europa Clipper Framework 
The key challenge in extending the current simulation framework of the Europa Clipper mission, currently in Phase 
B, is to meet the challenges of Phase E, i. e., mission operations. 
1. Variable Planning Horizon 
While many Phase A simulations were carried out over the entire lifetime of the mission, the planning horizon in 
Phase E will be much shorter: a single orbit around Jupiter takes about two weeks, and a typical planning horizon will 
encompass two of those.  The proposed planning process for Europa Clipper is outlined in Fig. 1 below.  The process 
illustrated in the figure can be summarized as follows:1  

 At all times during Phase E, a valid “Reference Activity Plan” (RAP) will be available from the system 
model.  The RAP takes the place of a static document called “strategic plan” used in past missions; unlike 
the strategic plan, the RAP is a dynamic instance of the system model and can be updated at any time. 

 The main outcome of a Phase E planning session will be a RAP update concentrated on a 4-week chunk2 of 
the activity plan, covering about two orbits around Jupiter.  Part of the RAP update will consist in running a 
full simulation from that point forward, to make sure that the plan update does not conflict with future 
planned activities. 

 

Figure 1 - Europa Planning Process (courtesy of D. Bindschadler and the Europa Clipper Project)3 

 
 

                                                           
1 Special thanks to Dave Mohr and Duane Bindschadler for sharing this information 
2 Durations are approximate since Europa flybys are not always regularly spaced; see Ref. [1] for details 
3 This figure is adapted from an architectural diagram presented at the Preliminary Design phase; the use of E9 and 
E10 is simply as a possible example of approximate timing 
 



18 
 

2. Web-based Access to the System Model 
In Phase A, the APGen model was run by a small team of experts intimately familiar with the configuration and 
operation of the modeling engine and of the subsystem models attached to it.  In Phase E, planning operations will 
require providing mission engineers with the ability to make changes to key aspects of the model (e. g., scheduling 
conditions) and to build a modified plan reflecting the changes.  This will require significant changes to the simulation 
infrastructure: 

 Web-based access will have to be provided, which requires setting up the simulation engine as a server or 
pool of servers capable of supporting a team of users. 

 The web interface will have to provide users with the ability to modify the adaptation on the fly, such as the 
details of scheduling constraints for science activities. 

 The system model will have to provide easy-to-query archiving storage, allowing planning personnel to 
store their plans in association with the changes they made to scheduling constraints. 

3. Increased Fidelity Requirements 
While Phase A simulations can get away with notional commands that just set various state variables to desired values, 
any activity in the plan is ultimately executed onboard the spacecraft through a sequence of commands.  Validation 
of plan activities therefore requires a detailed simulation of spacecraft behavior while executing those sequences.  
While such simulations have been successfully carried out using APGen [3], alternatives such as using a specialized 
C&DH model (possibly adapted from the flight software) should be investigated in the interest of maximizing fidelity 
and reducing the chances of modeling errors. 
It is also conceivable that improved instrument models will become available as science team refine their 
understanding of their instrument's behavior under the actual, deep-space operating environment.  On the other hand, 
instrument teams have been exposed to the APGen adaptation since pre-Phase A and may have found that the APGen 
DSL is expressive enough for the purpose of modeling their instrument.  In any case, it will help to provide 

 a streamlined integration process for the Europa Clipper configuration of the APGen model 
 an IDE for the APGen DSL similar to those currently available for established languages such as C++ and 

Java 
 a model debugger which allows APGen adapters to zero in on causes of unexpected behavior without 

having to become an expert in APGen internals 

B. Extending the Europa Clipper Modeling Infrastructure to Future Missions 
The Europa Clipper spacecraft is not planned to reach Jupiter until 2025, and so the recommendations we just made 
about meeting the requirements of Europa Clipper mission operations could be repeated verbatim for any future 
mission planning to enter operations in the same time frame.  The only difference between the Europa Clipper context 
and the context of a future mission is what we might call the “simulation bootstrapping process,” i. e., the centripetal 
characteristics which we discussed at the end of section V.  On Europa Clipper, these characteristics were largely the 
result of serendipity - one of us (S. W.) was on the Project Systems Engineering team from the very beginning.  For 
other missions, our recommendation is to rely less on chance and more on the process used in the initial configuration 
and staffing of a space mission to maximize the centripetal characteristics outlined at the end of section V. 
The results achieved by the Europa Clipper simulation team have already captured considerable attention on the part 
of JPL systems engineers, and we will rely on the collective wisdom of the engineering community for making system-
wide simulations a basic requirement of any new space mission setup.  Our description of the Europa Clipper system 
- the APGen modeling engine and the subsystem models attached to it - will hopefully tell systems engineers what 
they need to know to put together a system as capable as or more capable than the one used on Europa Clipper. 
 

VII. Conclusion 

In our paper, we have provided the reader with a whirlwind tour of the current Europa Clipper simulation system, 
what makes it tick, and what it took to assemble the system from scattered pieces.  We believe that the success of this 
simulation system speaks for itself and that future missions will have a strong incentive to replicate it in some form.  
We also acknowledge that assembling such a system takes a significant combination of talent, know-how and 
dedication which may not be so easily found on other projects.  The bar of entry into the world of mission-wide 
simulation systems could be lowered quite a bit by implementing the recommendations made earlier: 

 turn the simulation engine into a modeling server or pool of servers 
 provide web access to the simulation engine and to key aspects of the behavioral and constraint models 
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 train mission personnel in the art of subsystem integration by teaching the methodology outlined in section 
V 

 last but not least, strive to adopt the centripetal characteristics listed at the end of section V 
We are confident that these recommendations will result in simulation systems that will prove as capable as the one 
we helped develop for the Europa Clipper mission. 
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